
Oliver Baker

Page 1 of 21 RandoMIDI – Algorithmic Composition Engine

RandoMIDI – Algorithmic Composition Engine

This application has been built to be used to generate and control MIDI data. The
building of the patch has utilised a range of Max 7 objects that allow the user to
break down and influence an aleatoric composition process, creating an algorithmic
composition engine patcher. The patcher has been built using techniques covered in
taught sessions and Max 7 help patches/tutorials. Submitted in this assignment is
the following; a Max patcher, a Max application, a Max for Live device and a written
commentary and conclusion of the building and completion of the submitted
materials.

Overview of Algorithmic Compositor Features

The completed patcher, shown in Figure 1 (below) going by the name of RandoMIDI,
offers the user a variety of controls and parameters to influence the aleatoric
composition process. The user is able to control the composition of a drum kit and
three synthesizers, influencing the genre of the composition, the rate at which they
compose, the key and scale of the composition and more. Since the patch is MIDI
based, and utilises the operating system’s in-built AU DLS Synthesizer, the patch is
primarily self-contained and ready to use in an instant.

Figure 1 – User interface of the ‘RandoMIDI’ Algorithmic Compositor

Oliver Baker

Page 2 of 21 RandoMIDI – Algorithmic Composition Engine

How to Use the Algorithmic Compositor

The user can start and stop the composition process at any time by using the Toggle
button to the left of the interface, found next to the Tempo value, which can also be
changed by the user at any time. The user is provided with a visual response of the
start/stop status and the current tempo, beat and tick count.

Upon starting the patch, the synth sounds will be played and recorded, but in order
for the drums to be heard, the user must operate the Genre menu to the left of the
patch, selecting a desired genre for the drums to be played in, which includes
Techno, House, Electro and Trance. By default, the patch opens with the genre set
to ‘Off’, but the user can change the genre of the drums at any time.

The Roll menu allows the user to add a roll/loop effect to the drums and the synth
sounds. The Roll menus default setting is ‘Off’, but the user can operate the Roll
menu at any time, choosing a fraction for which the sequence will be looped at.

The drum sequencer has two further menus; Pattern and Mute. The Pattern menu
can be operated to change how often the pattern will be randomised. Each time the
pattern is randomised, the sequence changes within the selected genre. The user
can use the Pattern menu to set how often (in Bars) the pattern will randomise, or
the user can turn the randomisation off. The user may also randomise the pattern at
any time using the Randomise Pattern button, found below the Pattern menu. The
Mute menu allows the user to set how often (in Bars) the individual drum instruments
will be muted and unmuted randomly. Like the Pattern menu, the user is also able to
turn the Mute randomisation off by selecting the ‘Off’ setting. In the lower of the
interface, a Mute menu is seen, which is also operated by the Mute menu to give the
user a visual feedback of the randomisation. The user may mute and unmute
individual drum parts at any time using the lower Mute menu. Found next to the
Randomise Pattern button, the user can operate the Swing dial to increase or
decrease the swing amount in the sequence, influencing the drums and the synth
sounds with a clean swing effect.

The user is able to choose the signal path for the MIDI data generated by the drum
sequencer using the Drums MIDI Out menu, found to the left of the interface below
the Tempo marker. By default, this menu is set to ‘AU DLS Synth 1’, which uses the
in-built operating systems synthesizer. Found below the lower Mute menu is the
Randomise menu. Here, the user can use the dials assigned for each individual
drum instrument to further randomise its pattern, choosing to add discreet input from
the randomiser or to max it out and go wild. These dials also give the user a visual
response of when each drum instrument is played, by flashing the LED in the centre
of the dial whenever each instrument is hit. The user can choose to allocate the
randomisation effect to be pre-mute or post-mute by using the Pre-Mute and Post
Mute buttons to the left of the Randomise menu. By selecting the Pre-Mute option,
the randomisation will only occur when the instrument is unmuted. By selecting the
Post-Mute option, the randomisation will occur at all times, even when the instrument
is muted.

Oliver Baker

Page 3 of 21 RandoMIDI – Algorithmic Composition Engine

To the upper left of the interface, the user is given the controls for the synth sounds,
which include Bass, Lead and String sounds. The three synth sounds are given their
own menu operating in bars, much like the drum sequencer. The user can select
how often in bars the patch will randomise the voice and the sequence of each
instrument using these menus. Much like the drum instruments, the user is also
given a visual response of the sequence with the LED’s found under each
instruments bar menu, buttons to mute and unmute each instrument and a MIDI Out
destination, which is set to ‘AU DLS Synth 1’ by default. However, for each
instrument the user is also given a menu for the voice of the synth, which can be
operated at any time by the user and by the instruments Bar menu.

To the right of the synth interface, the user can change how often the key of the
sequence is changed and how often the synths mute settings randomise. The user
may change the key of the sequence by operating this Key menu and by operating
the lower Key menu, found just below. The keyboard gives the user a visual
response of the selected key, chosen by the Key randomisation or by clicking a key
on the keyboard to set a new key. The user can operate the MIDI In menu to the left
of the keyboard to select a MIDI input to influence the key of the piece, allowing the
user to use a MIDI keyboard or other devices to change the sequencers key.

Found below the Key menu is a Scale menu, allowing the user to select from a range
of ten scales for the user to choose, influencing the scale at which the random synth
sequences will be played in.

To the far right of the interface, the user can operate the Preset menu, allowing the
user to recall a range of 6 presets to explore.

Oliver Baker

Page 4 of 21 RandoMIDI – Algorithmic Composition Engine

Table of Artistic Goals and Technical Realisation

Artistic Goal Technical Realisation Ref.

No:
Patch opens in
presentation
mode displaying
only user
interface objects
with a screen size
suitable for a 13”
non-widescreen
monitor

For this patch to open in presentation mode, the ’Open in
Presentation’ parameter in the Patcher Inspector was toggled. To
utilise presentation mode, the appropriate objects that were chosen
for the user interface were toggled to be displayed in Presentation
Mode, arranged appropriately for a 13” non-widescreen monitor to
provide a suitable interface for the user.

1

Use Patcher
Objects

This patch was built with the use of patcher objects, helping to
organise the objects in patcher view. [Patcher] objects were used to
create a self-contained patcher, along with [inlet] and [outlet] objects
to provide access to the patch for external objects. By appropriately
grouping objects in to patchers, the signal flow can be easier to
follow and the objects can be grouped appropriately.

2

Replicate drum
sequences from 4
genres

This patch starts with the drum sequence generator; the user is able
to choose a genre of drums for the patcher to generate; Techno,
House, Electro or Trance. In order for the patcher to generate
interesting and unique drum sequences for these genres, a range of
sequences were composed for each instrument, such as the kick,
snare, hi-hat etc. following the specified genre. When the user alters
the genre parameter of the patch using the [textbutton] objects
shown in Figure 2, the patcher alternates the [counter] objects signal
flow to the appropriate patcher for the selected genre, shown in
Figure 3. Found in each genre patcher is a range of patcher objects
for each drum instrument, containing sequences for the appropriate
instrument in the selected genre. For the sequences to be played, a
[tempo] object is used to output number values of different ranges to
a specified tempo value, which is defined by the user via an integer
object in the user interface. To start and stop the tempo object, a
[key] object, [select 32] object and a [toggle] object trigger the start
and stop of the tempo object at the press of the space bar. The
toggle object is also shown in the user interface, as it can be
triggered but it also shows a visual response of the start and stop
status of the tempo object.

2, 12

Oliver Baker

Page 5 of 21 RandoMIDI – Algorithmic Composition Engine

Roll feature

A roll feature was added to the patch to add an interesting effect for
the user to play with. The roll uses [gate] objects to alternate the
value of the metro [counter] object, displayed in Figure 5. As the
gate object counts the 16 ticks produced from the [metro] object, the
[gate] objects re-trigger the pattern with different values using
appropriately numbered [message] objects. As the gate object
counts the 16 ticks, the [message] objects interpret different values
from the ticks, producing reduced, or fractioned versions of the value
of the tick.

2, 20

Pattern and Mute
Randomiser

The patch is able to randomise the patterns for each drum
instrument and randomise the mute of each instrument. Found in
each drum genre patcher object is a series of [random] objects, as
shown in Figure 4. These [random] objects receive a bang specified
by the [counter] objects in the [p barcount] patcher, shown in Figure
6, which is specified by the [textbutton] object series in Figure 7.
Selecting a [textbutton] object from Figure 7 will alter the signal flow
of the [p barcount] patcher in Figure 6 by altering the [gswitch2]
objects to allow the signal to progress from the appropriate counter
whilst closing the signal from the other counters. The signal from the
[counter] object, which counts the relevant number of bars specified
by the [textbutton] objects in Figure 7 then triggers the [random]
objects shown in Figure 4. These [random] objects send newly
generated number values to the [patcher] objects for each
percussion instrument, seen in Figure 4. These values travel
through a [select] object in each instrument [patcher] object,
selecting a pattern from the range of pre-sequenced patterns for
each instrument, which can be seen in Figure 8. When the [random]
objects are triggered in Figure 4, each instrument changes in
pattern, or sometimes uses the same pattern as it may receive the
same number. This is a simple and effective way to compose new
drum sequences in an instance.

After travelling through a large amount of [patcher] objects and
[gswitch] objects, the signal from the sequence patterns eventually
reaches a [makenote] object, which creates a note to be sent to a
[noteout] object. This sends a note to the patchers default synth, the
AU DLS Synth. Each note of the drums has a different pitch,
specified by the [makenote] object, relating to the instrument of the
drum kit.

2, 3, 4,
7, 13,
14

Oliver Baker

Page 6 of 21 RandoMIDI – Algorithmic Composition Engine

To add further variation to the compositional process of the patch,
the user is able to mute and unmute individual drum parts, but is
also able to specify these parts to be muted randomly at specified
intervals, similar to the process used in randomising the pattern. A
duplicate [p barcount] object is used, just like the patcher shown in
Figure 6, which is also operated by a duplicate series of [textbutton]
objects as shown in Figure 7. The [counter] objects send their signal
to a [p randommute] object, shown in Figure 9. This [patcher] object
uses a strip of [random 4] objects to generate a random number
between 0 and 3 for each individual instrument. Next, each [random
4] object is followed by a [select 1 2] object, which selects the values
1 and 2 from the newly generated number. If the number happens to
be a 1 or a 2, the [select 1 2] object will send a bang to the
[message] object with 1 in, which will unmute the instrument.
However, if the [select 1 2] object receives a 3 or a 0 from the
[random 4] object, the [select 1 2] object will send a bang to the
[message] object with 0 in, which will mute the instrument.

Randomise
pattern button

The user is given the option to randomise the pattern at any time,
without having to rely on the bar count feature to randomise the
pattern. A [button] object is used in the interface, which sends a
bang to the [p genre] object, travelling through the [patcher] objects
via their various [inlet] objects and finally reaching the [random]
objects in each instrument [random] object series, shown in Figure
4. Using the Randomise Pattern [button] object will send a bang
straight to the [random] objects, providing the user with a fast and
instant pattern randomisation feature.

3, 13,
14

Swing Feature The user is granted with a Swing feature, allowing the user to adjust
the swing of the rhythm. The [p swing] object, shown in Figure 10,
captures the ticks from the [metro] object, splitting the values in to
two parts; the odd numbers and the even numbers, since swing is
an effect that applies to the even numbers of the timing value. Using
[/] objects to express the formula (60,000 / Tempo = m/s) to
calculate the gap between each tick in m/s for each tempo, the [p
swing] object calculates an appropriate range of time in m/s for a
swing effect to take place in. The [p swing] objects uses a line of
[delay] objects to delay the time of each even tick, based upon the
value set by the user using a dial and the calculated range for the
dial to operate in. By adjusting the value of the Swing [dial] in the
device, the [p swing] patcher adds a relevant delay to the even ticks,
creating a groovy swing effect for the user to play with.

2, 13

Oliver Baker

Page 7 of 21 RandoMIDI – Algorithmic Composition Engine

Drums MIDI Out The user is able to specify where the signal from the drum sequence
generator is to be sent. By default, it is sent to the in-built AU DLS
Synth, which generates drum sounds from the operating systems
MIDI instrument. However, the user may want to send this signal
elsewhere, such as to a DAW or hardware interface/instrument.
Shown in Figure 11, a [midiinfo] object is used at the start of the
patch to fill the [umenu] object with information of the MIDI output
availabilities. The user is able to use the [umenu] object to select a
desired MIDI output. The [umenu] object then sends the selected
preference to the [noteout] object of each drum instrument, altering
the MIDI destination for the drums as a whole.

9

Mute Kit Parts As well as using the [p beatcount] object to mute drum parts at
selected intervals, the user can also use the [textbutton] object in the
interface to mute and unmute each part. By using the signal from the
random mute system to toggle the interfaces [textbutton] object, it
also provides further visual information for the user, avoiding
confusion as the patch mutes and unmutes random parts. These
[textbutton] objects, shown in Figure 12 can be operated by both the
random mute patcher object and the user in the user interface.
These [textbutton] objects toggle a [gswitch2] object for each
instrument, which can open or close the signal flow for each
instrument.

13

Randomise
individual drum
parts

The user is able to add randomisation to each drum part, with the
ability to increase and decrease the intensity of the randomisation.
The [p randomization] object makes use of the tick counter, received
via an inlet and sent to a [random 32] object. Each tick, the [random
32] object generates a random number value between 0 and 31,
shown in Figure 13. The [dial] object is operated by the user to
increase and decrease the intensity of the randomisation. Before
being sent to the [p randomization] object, the dials operated by the
user are inverted, using a subtraction object (shown as [!- 32] in
Figure 13), which reverses the inlets by a given value, which in this
case is 32. Since the lowest value of the dial is now 32, a [sel 32]
object is used shown in Figure 13 to cut off the randomisation signal
flow when the dial is at its lowest, or off. Once the dial is no longer at
32, the signal flow opens, allowing the randomisation to be heard.
As the value of the dial increases, the value from the invert object
reduces, from 32 to 1. This value is then sent to the Number Range
inlet of the [random 32] object. Effectively this means that as the dial
increases in value, the range of the [random] object decreases,

2, 3,
13, 20

Oliver Baker

Page 8 of 21 RandoMIDI – Algorithmic Composition Engine

which in turn increases the chance of the object sending a bang.
The bangs generated by the random objects are sent to the noteout
objects, creating notes alongside the notes generated by the
sequences earlier in the patch.
 The user is able to specify this effect to be either post-mute or pre-
mute. Shown in Figure 15, LED’s are used to enable the user to
specify pre-mute or post mute, which in turn toggles the [gwitch2]
objects visible in Figure 15 to alternate the signal flow. If the user
specifies post-mute, the signal from the randomiser will travel
through the same switch as the mute toggles. If the user specifies
pre-mute, the signal from the randomiser will travel straight to the
noteout objects for each drum instrument.

Bass, lead,
strings,
randomised
voice, record and
playback

The user is able to introduce some synth sounds to the patch,
including bass, lead and string sounds by programming the series of
[textbutton] objects in the interface to specify how often each
instrument pattern changes and mutes, similar to the drum kit. Since
the bass, keys and strings are generated in a very similar manner,
the system for creating the keys will be looked at primarily. Looking
at the signal flow for the keys, after passing through the [p barcount]
system, which uses the [textbutton] objects and a [counter] object to
count a number of bars specified by the user, the [p keys] object,
displayed in Figure 16, uses an [mtr] object to record MIDI date and
play it back. Since recording with the [mtr] object stops the signal
flow, the recording system alternates the signal with [gswitch2]
objects, so that when the [mtr] object records, a duplicate of the
signal is sent to the noteout system to be played. Once the signal is
recorded and playback has begun, the signal is switched from the
direct routing to the playback from the [mtr] object.

In order to generate pitch, the [metro] object sends its ticks to the [p
scale] object in the [p keys] object. The signal is then sent to a
generative system in the [p keys] object displayed in Figure 17.
Each tick bangs the random 20 object, sending a random number
value to the [select] object. Although the [select] object has 20
variables, there are only 8 buttons. These buttons generate a
number sequence of a pitched scale, with the example in Figure 17
being a major scale. These numbered [message] objects are linked
to more than one outlet, some more than others. This means that
some notes have a higher or lesser chance of being played.

2, 3, 4,
5, 9,
24

Oliver Baker

Page 9 of 21 RandoMIDI – Algorithmic Composition Engine

The randomly generated number/pitch sequence is then sent to the
record system via a [send] object, displayed in Figure 17.

Much like the pitch generation system, the velocity and duration
system, shown in Figure 18 start with [random] objects receiving
bangs from the [metro] object. Each bang generates a random
number, which travels through a [select] object to trigger the
[message] objects for each parameter. Like the pitch generation
system, some messages are more likely to be banged than others.
Looking at Figure 18, the most likely message to be banged is the
value of 0. Since a velocity of 0 is effectively silence, this acts as a
musical rest, adding a break to the sequence. The values generated
by the pitch, velocity and duration are sent individually to the
recording system using [send] objects.

When using the AU DLS Synth, the user is able to alternate the
voice of each synth using a [pgmout] object. As each instrument is
sent out via its own MIDI channel, its voice can be specified
individually using the [pgmout] object by sending number messages
via [message] objects to it. Whilst the user can specify which voice
each instrument uses by operating a custom [umenu] object in the
interface, the user can also operate the [textbutton] objects to
randomise the voice as well as the pattern for each instrument.

Button Toggle
System

To provide the user with an easy to follow interface, [textbutton]
objects were used greatly throughout the patch. However, these
buttons work as individual toggles, and struggle to work together as
a series. Looking at the button system in Figure 7, when each button
is toggled, it is followed by [message] objects and a [button] object.
In a specific example, if the user toggles the ’4 Bars’ button, the
[textbutton] object will send a signal to the [set 0] object, which will
turn all of the other buttons in the series off. The [textbutton] object
will also send signal to the [set 1] object, which will turn the origin
[textbutton] on, even after being toggled again, preventing the user
from turning the button off. The signal from the [textbutton] is also
sent to a [button] object, which carries the signal from the chosen
button to the appropriate destination.

2, 10

Oliver Baker

Page 10 of 21 RandoMIDI – Algorithmic Composition Engine

Key Change

The user is able to change the key at random intervals or in an
instance using the key change system. Displayed in Figure 19, using
a [textbutton] system that is familiarly used throughout the patch, a
bang is sent for each specified bar to the [p key] object, shown in
Figure 20. This bang then generates a random number from the
[random 127] object, sending it to the [slider] object. From there, the
signal from the slider, valued from 0 to 127, is scaled using the
[scale] object. Written as [scale 0 127 48 60], the scale object
transforms the values 0 – 127 to 48 – 60. This system effectively
creates a random number between 48 and 60, which is used as the
master key for the patcher. The user may also specify a key using
the kslider shown in Figure 19. The randomly generated number
from the [p key] patcher is sent to the [kslider] object, allowing the
[kslider] object to be the definitive value for the key. This avoids
confusion when operating the key to be changed and random
intervals by also providing a visual display of the current key for the
user to observe.

To implement the key with the randomly generated pitch of the
notes, a plus object is used, shown in Figure 16 to combine the
number value of the selected/generated key with the number value
of the generated pitch.

2, 3, 8,
16, 19

Scale Menu

The user is able to specify which scale the randomly generated
notes will be played in. The user operates the custom Scale [umenu]
object, listing a range of scales to choose from, which sends the list
number value to a [p scale] object, which is the patcher object in
which each instrument generates its pitch number value. Shown in
Figure 21, the [umenu] objects list number value alternates the
signal flow from the [metro] object to the appropriate collection of
objects for each scale. Each collection has a variation of [message]
objects which follow the values of their specified scale, meaning that
the pitch generated by each collection will follow a specific scale, as
specified by the user.

2, 3, 6,
13, 17,
19

Oliver Baker

Page 11 of 21 RandoMIDI – Algorithmic Composition Engine

Overall Presets
Offered

The user is able to recall a range of presets, specified by the [preset]
object on the right of the interface. The presets on the [preset] object
are already saved, providing the user with some great starting points
in operating the patch. The [dial] objects and [umenu] objects have
been saved in to the [preset] object by specifying their values and
shift-clicking an allocated slot. However, since many of the user
interface objects are [textbutton] objects, which cannot be specified
by the [preset] object, a range of [sel] objects capture the preset
number value, shown in Figure 22. For each preset number value, a
bang is sent to a selected group of [textbutton] objects to toggle
them appropriately. If the user selects preset 1 on the [preset]
object, the [preset] object will send a bang to the [sel] objects, but
only the [sel 1] object will carry the signal to a [button] object, which
will toggle a selected range of [textbutton] objects.

6

Create a suitable
user interface

To help the user understand the patch and operate it appropriately,
a suitable user interface was implemented in to the patch. This
includes labelling each control the user has access to, gathering the
controls in to appropriate groups and providing visual feedback for
the user to interpret. Shown in Figure 23, a range of [panel] objects
are used to help group the objects in to appropriate collections, such
as drum kits, bar loops and kit instruments. [led] objects are used to
provide visual feedback for the noteout activity for each instrument.
The values from the [tempo] object are displayed in individual
[integer] objects, labelled for the user to observe.

1, 6,
10

Implementation of
a Max for Live
patch

To further expand the output capabilities of this patch, the drum
sequence generator was implemented in to a self-contained Max for
Live patch, shown in Figure 24. The noteout objects were re-
formatted in order for the signal to be implemented with Ableton
Live. A range of Max for Live objects, such as [live.thisdevice] and
[M4L.api.ObserveTransport] were implemented in to the patch,
displayed in Figure 25. The user interface was re-formatted to suit
the size of the MIDI plug-in window and the functionality of the drum
sequence generator.

23

Oliver Baker

Page 12 of 21 RandoMIDI – Algorithmic Composition Engine

Programmed Constructions

Figure 2 – Genre selection system utilising [textbutton] objects

Figure 3 – Inside the genre selection system utilising [patcher] objects

Oliver Baker

Page 13 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 4 – [patcher] objects holding patterns for each instrument

Figure 5 – Roll system utilising [gate] objects

Oliver Baker

Page 14 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 6 – Pattern and Mute randomiser

Figure 7 – Pattern and mute randomiser interface

Figure 8 – Sequence selector for the kick drum

Oliver Baker

Page 15 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 9 – Random mute system for the drum instruments

Figure 10 – Swing system, altering the even numbers for each even tick

Figure 11 – Umenu objects displaying MIDI output paths

Oliver Baker

Page 16 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 12 – [Textbutton] objects toggling the [gswitch2] objects for mute function

Figure 13 – Randomization scale objects

Figure 14 – Inverted randomization dials

Figure 15 – Randomisation post/pre menu options

Oliver Baker

Page 17 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 16 – [p keys] object

Figure 17 – Pitch randomizer

Oliver Baker

Page 18 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 18 – Duration and velocity randomization

Figure 19 – Key randomization interface

Oliver Baker

Page 19 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 20 – Random key generator

Oliver Baker

Page 20 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 21 – Scale parameters, showing different scale values

Figure 22 – Preset object and select objects

Oliver Baker

Page 21 of 21 RandoMIDI – Algorithmic Composition Engine

Figure 23 – User interface

Figure 24 – Ableton Max for Live patch

Figure 25 – Max for Live objects

