
Stereo Audio Analyser
Introduction
This patcher has been created that can be used to generate and analyse audio from a number
of sources. Shown in Figure 1 (below), the patcher utilises a range of Max objects that provide
various functions to create a stereo audio analyser app, providing the user with a range of
sound sources, a selection of audio effects and a set of visual displays of the sound in various
forms.

Figure 1

Overview of Analyser Features
The analysers features fall in to three groups; audio source, audio effect and audio analysis.
The interface has been designed to allocate the patchers features in to these groups,
encouraging an ease of use within the patcher. The user is provided with a minimal but
functional display, prioritising the controls over the control values to help the patch to be easy
to navigate.

The patcher, shown in Figure 2 (below) has three sections; the signal source section, the
effects section and the analysis section.

Figure 2

The patch interface begins at the Signal Source Section; the user operates this section to
activate a sound source or audio signal, ranging from basic features such as;

• an audio input,
• 4 sine wave oscillators,
• a noise source,
• a ramp wave
• a sound file player.

Additional to the criteria of this assignment, to allow the user to control the audio signal, the
Signal Source Section also includes;

• MIDI control of oscillator frequency
• an audio input and line recorder,
• a source mixer,
• a phase scope,
• channel pan control.

The sound from the Signal Source Selection then travels through the Effects Section, shown
in Figure 2 (above). This section provides a range of stereo audio effects that modulate the
signal in various ways. The features that are additional to the criteria include:

• a VST Insert,
• an equaliser,
• a bit crusher,
• a frequency shifter,
• a stereo delay,
• a filter.

After the signal from the Signal Source Section travels through the Effects Section, it
reaches the Analysis Section, which provides the user with a trilogy of visual audio response
displays as part of the basic criteria of this assignment. These displays include mono and
stereo versions of;

• a dB meter,
• an oscilloscope,
• a spectrum analyser,
• a sonogram display.

As well as implementing the features given in the criteria for this assignment, additional
touches are also found in the patch, including;

• oscillator level balance and frequency link,
• sample speed and time stretch,
• source mixer pan controls,
• filter, bit crusher and delay presets.

To help simplify the user interface and not to overwhelm the user with too many controls at
one time, tabs are used in the Signal Source and Effects sections to display only a few
controls at a time. Both sections have three tabs of controls, helping to simplify the interface
at a glance. Since the patch has a lot of controls, a plain and monotone theme was
prioritised to prevent the patcher from becoming too busy to look at.

How to use the Analyser
The patch begins with the On/Off button in the analysis section of the patcher at the top right
corner, seen in Figure 3 (below). This button turns Max MSP’s audio drivers on or off,
activating the visual response displays and enabling the user to hear the audio sources.

Figure 3

Once the audio driver is on, the user operates the Signal Source Section to generate a
signal. The first tab of this section, shown in Figure 4 (below) offers the user a range of
controls to generate sound from a series of oscillators. Each pitch-based oscillator has a
frequency value control to set the pitch of the oscillator. This value can be set by operating
the number boxes or by sending MIDI note values to the patcher.

Figure 4

Each oscillator also has a level control and a mute/unmute button to allow the user to control
the amplitude of the oscillators. If the Harmonic Frequency control is set to ‘Linked’, the
value of Sine oscillator 1 will be multiplied and linked with the other sine oscillators to link
their frequency, creating an octave-based harmony throughout the sine wave oscillators.

The Sampler tab, shown in Figure 5 (below) offers the user controls to load samples and
record line and input signal. The user can operate the sampler to load a file, clear the file,
set the playback position of the file, play, stop and loop the file, change the speed and
direction of the file, set the level of the sampler. The time stretch bar at the bottom of the
sampler window also allows the user to time stretch the audio sample.

Figure 5

The user can operate the Recorder in Figure 5 (above) by activating the line signal to record
the signal generated by Max from the oscillators and the sampler, or by activating the input
signal to record the audio input routed in to Max MSP, such as a microphone. Much like the
Sampler in Figure 5 (above), the Recorder allows the used to play, stop and loop the
recording, adjust the level of the recording, adjust the speed and direction of the recording
and clear the recording. The user can activate the Record Clip toggle to start recording, then
deactivate the Record Clip toggle to stop recording, allowing the user to record a sample of
any desired length.

The Mixer tab displays the source mixer, the audio menu and the phase scope, seen in
Figure 6 (below). In this tab, the user can change the level and the pan settings of the
oscillators, the sampler, the recorder and the main output. The Mixer tab also allows the
user to mute/unmute each channel, set the audio input and output of the patcher and view
the phase scope of the stereo audio output.

Figure 6

The effects tab in Figure 7 (below) presents the user with a Filter tab and two effects tabs.
The Filter tab provides the user with a sample 4 band EQ and a filter. The user can set the
level of each frequency band to adjust the EQ of the signal. The filter allows the user to set a
filter type and adjust the frequency and resonance of the filter.

Figure 7

The FX1 tab in Figure 8 (below) opens the transpose and VST menu controls, allowing the
user to change the frequency or pitch shift the audio signal. The VST menu allows the user
to load and operate a VST in the signal chain.

Figure 8

Once the signal has been processed through the effects chain, it reaches the system output
and generates visual audio data for the user to observe. The Analyser Section in Figure 9
(below) allows the user to set the level of the analyser input and observe the oscilloscope,
spectrum analyser and sonogram data in stereo or mono.

Figure 9

How the Patcher Works

When the user opens the patcher, its default state will be set to have no audio sources
playing and the audio drivers inactive.

To allow the user to activate and deactivate the audio driver, a live.text object is used,
seen in Figure 10 (below), to trigger the audio driver in presentation mode, with messages
set to indicate whether the driver is on or off.

Figure 10

To provide a cleaner interface for the user to operate, each main section of the analyser is
built in bpatchers. To show and hide these objects, tab objects are used, shown as item
1 in Figure 11 (below).

Figure 11

Each tab object sends a number value to a select object shown in Figure 12 (below), which
selects a specific number and sends script hide and show messages to a thispatcher
object, which hides and shows the relevant bpatchers for the user to operate. To ensure
this feature was implemented efficiently, each bpatcher is given a formal Scripting Name
for the program to refer to, such as Sine, Noise and Mixer. When a tab is selected, the
appropriate select object outputs a bang, which will send script hide and script show
messages to the thispatcher object, hiding some patchers from the presentation window
but showing relevant patchers based upon the chosen tab.

1

Figure 12

Figure 13 (below) shows an audio routing diagram that shows how the audio is routed from
the audio sources to their audio destinations.

Figure 13

The first sound source comes from a series of sine wave oscillators, seen as item 1 in Figure
14 (below). Four cycle~ objects are operated by individual number objects (item 2) to
create sine waves. The first cycle~ object is also controlled by a MIDI output by receiving
MIDI data from a notein object (item 3), converting the MIDI data to frequency data using
a mtof object (item 3) and sending it to the first oscillators number object. A loadbang
object (item 4) is used to set the first oscillators default value to 440 Hz and activate the
frequency link upon opening the patch.

Figure 14

Each oscillator has its own amplitude control. Shown in Figure 14 (above), each oscillator
travels through a gain~ object, which is controlled by a slider object (item 5). The audio
signal from the gain~ object travels to a meter~ object (item 5) to provide a visual
response of the oscillators amplitude. Then, the signal travels through a gate~ 2 object
which is controlled by a live.text object (item 6) to provide a mute/unmute feature for the
user. In order for the oscillators to harmonize, the frequency value from oscillator 1’s
number object travels through a trio of multiply (*) objects (item 7) to create a series of
harmonic values for each oscillator.

Figure 15

1

2

3

4

5

6

7

Similarly, the ramp wave oscillator in Figure 15 (above) and the noise generator in Figure 16
(below) are operated with number objects and have amplitude and mute controls from the
same objects as the sine wave oscillators in Figure 14 (above).

Figure 16

In order for the audio data to leave the oscillators bpatcher, the audio signal is routed to an
outlet object, allowing the signal to leave the bpatcher (item 1, Figure 16) and travel
through the main patcher.

1

Figure 17

Figure 17 (above) shows the objects used in creating the sampler. A range of user interface
objects, such as button and led objects are used to control the groove~ (item 1) and
buffer~ (item 2) objects found in the p Sampler patcher in Figure 18 (below), which is
linked with the bpatcher using inlet and outlet objects (item 3).

Figure 18

1

2

3

4

1

The outlet objects take data from the info~ Sampler object (item 4) and set Sampler
message object to provide information about the sampler to the user, such as waveform~
object information and file name information to the cold inlet of a message object. To ensure
the sample is in stereo, the signal travels from both channels from the sampler’s groove~
object before travelling through two gain~ objects controlled by a slider object (item 1),
seen in Figure 18 (above).

The recorder system, shown in Figure 19 (below), takes its stereo input from an ezadc~
object (item 1). After travelling through two amplifiers to reduce the amplitude of the signal
(item 2) and a gate~ 2 object controlled by the user interface from the ‘Input’ live.text
object, the input signal reaches a record~ object (item 3), used to record the input signal
from the audio input. The audio signal from the oscillators and sampler also travels to the
record~ object from two inlets.

Figure 19

When the user operates the led object to record the clip, the signal is triggered in multiple
places from a t i i i object (item 4), which initiates a sequence of objects that allows the
user to record the sample for as long as desired. When the record clip button is deactivated,
the signal stops the recording and defines the recorded clip length to the elapsed time, which
ensures that the clip is recorded entirely and for as long as desired. Shown below in Figure
20, a buffer~ object is used to store the clip and a message object is used to provide visual
feedback of the recorded sample to the waveform~ object. Similar to the patcher object in
the sampler in Figure 19 (above), a groove~ object is stored in a patcher object, shown in
Figure 20 (below).

1

2

3
4

Figure 20

The signal leaves the groove~ object in stereo and travels through two outlets to reach the
recorder bpatcher, before travelling through two gain~ objects and leaving the bpatcher in
stereo.

The source mixer, shown in Figure 21 (below), takes input from the audio sources through
inlet objects (item 1) before routing the signal through gain~ objects controlled by
slider objects, paired with meter~ objects (item 2) to provide a visual response of each
channels loudness.

Figure 21

1

2

3

After the signal from each channel travels through gate~ 2 objects controlled by
live.text objects (item 3) to mute/unmute the channels signal, the audio is routed to a
patcher object for the pan, shown in Figure 22 (below). The patcher takes its inlet data
from each channels audio signal and a set of live.dial objects to control the pan from
outside the patcher. The live.dial object signal controls the gain~ objects (item 1)
shown in Figure 22 (below), with a scale object (item 2) inverting the right signal of the
live.dial object. By setting the Number of Steps of the gain~ object to 64, the
live.dial will operate the gain~ objects as an effective pan. The audio from the pan is
then routed to the output via the stereo pair outlet objects (item 3).

Figure 22

From here, the signal travels to the filter and EQ unit. Shown in Figure 23 (below), the stereo
input travels through two svf~ and selector~ 4 objects (item 1), controlled by a pair of
live.dial objects (item 2) to operate the filter cutoff and resonance controls. A umenu
object (item 3), shown in Figure 23 (below) is used to send filter type messages to the
selector~ 4 objects to allow the user to operate a variation of filter types.

1

2

3

Figure 23

From the selector~ 4 stereo outputs, the signal then travels in to two patchers, shown in
Figure 24 (below). These patchers contain a string of cross~ objects, which filter the audio
at specified values, sending the lowpass filtered audio to an audio outlet and sending the
remaining filtered data to the next filter in the series. This string of filter objects splits the
signal in to four frequency bands for the user to control.

Figure 24

To ensure that the signal remain in stereo, two patcher objects are used with this string of
filters to filter the left and right channels separately. From here, the output from the two
patchers is routed in to pairs of gain~ objects seen in Figure 24 (above), controlled by a
slider object. The audio is routed in to meter~ objects to give the user a visual response
of each bands amplitude. Shown in Figure 24 (above), the audio is then routed through two
outlet objects, capturing the left and right outputs of each frequency band.

1

2

3

The frequency shift was achieved with the use of a pfft~ object (item 1) in Figure 25
(below). Although this object was not fully understood at the time of its instalment, it was
implemented well and tested thoroughly. The stereo pair of pfft~ objects receive data from
the transratio object (item 2), which converts the frequency value of the kslider object
(item 3) to note transposition data.

Figure 25

Whilst the user is able to operate the frequency shift with the kslider object in the interface
of the patcher, the user can also send MIDI data to the patcher, which will be received by the
notein object (item 4), allowing the user to control the pitch shift with a MIDI keyboard.

The VST menu, shown below in Figure 26, uses a vst~ object (item 1) to implement a VST
input in the effects chain. The vst~ object takes the stereo audio signal whilst receiving data
from a series of message objects that send commands to load, open and bypass VST
inserts in the patcher.

Figure 26

1

2

3

4

1

To ensure the user interface is more understandable, message and led objects are used in
the interface to trigger the command message objects. This helps the patch to be easy to
understand.

From the pitch shift and VST bpatcher, the stereo signal is routed in to the bitcrusher and
delay bpatcher. The signal then reaches a pair of tapin~ objects (item 1), shown in Figure
27 (below). The tapin~ object acts as an input to a delay line. Paired with a tapout~ object
(item 2), the signal is delayed by a set value, controlled by the dials in the user interface. To
implement feedback in the stereo delay, the output of the tapout~ object (the delayed signal)
is routed to an amplifier, shown in Figure 27 (below), with a dial object granted to the user
in the interface of the patcher, which controls the amplitude of the amplifier. To ensure the
signal does not get too loud, the amplifier is limited to multiply 0.85.

Figure 27

The user is provided with a range of preset parameters for the stereo delay unit. Shown in
Figure 27, a umenu object (item 3) is implemented with a list of names relevant to the values
parameters. When a umenu preset is recalled, a series of sel objects (item 4) triggers a bang,
depending on the output value of the umenu object. Each sel object is followed by a sequence
of message objects; when the sel object is triggered by the output value fo the umenu object,
the following message objects send number values to the interface controls of the delay effect.

The user also has the option to link and unlink the stereo controls of the delay unit. A
linked/unlinked live.text object (item 5) sends a trigger signal to a pair of gswitch2
objects (item 6) in Figure 27 (above). If open, these switches send the data from the left stereo
delay controls to the right stereo delay controls, linking the left controls with the right controls.

Figure 28

1 1

2 2

3

3
5

6

1

2
2

The bitcrusher is achieved with a pair of degrade~ objects (item 1), shown in Figure 28
(above). Two dial objects (item 2) travel through scale objects to scale the dials to a
suitable value for the degrade~ object. Similar to the stereo delay in Figure 27 (above) the
bitcrusher presents the user with a umenu (item 3) object with the ability to recall preset
parameters for the bitcrusher controls.

Once the signal has travelled through the effects chain and returned to the source mixer, the
signal is then sent to the Output bpatcher. This patcher, shown in Figure 29 (below), takes
the stereo signal from two inlet objects and adds/subtracts the signal in to an amplifier
(item 1), routing the signal in to a scope~ object (item 2) to visualise the stereo phase of the
audio signal.

Figure 29

1

2

3

The Output patcher provides the user with umenu objects to set the audio input and output of
the patcher. Once the patcher is opened, the adstatus object (item 3) reports the audio
driver settings, listing them in to a umenu object. The same umenu object routes the audio
driver settings in to the adstatus object, allowing the user to change the driver’s settings.

Figure 30 (below) shows the master output from the source mixer routed to a stereo pair of
gain~ objects controlled by a slider object (item 1), which control the level of the signal
routed to the visual response displays, such as the oscilloscope and the sonogram. The dB
meter (item 2) in Figure 30 (below) has been added to the interface of the patch along with a
message box (item 3) to display the number value of the dB meter.

Figure 30

The mono and stereo analyser bpatcher objects in Figure 31 (below) uses inlet objects
to receive the stereo audio signal of the patcher before routing the signal to the varied visual
response displays. The oscilloscope is achieved by using a scope~ object, the spectrum
analyser is achieved by using a spectroscope~ object and the sonogram is achieved by
using a spectroscope~ with the objects Display Mode set to Sonogram. The user is able to
display either the mono or stereo version of this bpatcher object.

Figure 31

1

2 3

